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Abstract

Invisible Digital watermarks have been proposed as a method for discouraging illicit
copying and distribution of copyright material. In recent years it has been recog-
nized that embedding information in a transform domain leads to mo re robust
watermarks. A major diÆculty in watermarking in a transform domain lies in the
fact that constraints on the allowable distortion at any pixel may be speci�ed in the
spatial domain. The central contribution of the paper is the proposal of an approach
which takes into account spatial domain constraints in an optimal fashion. The main
idea is to structure the watermark embedding as a linear programming problem in
which we wish to maximize the strength of the watermark subject to a set of lin-
ear constraints on the pixel distortions as determined by a masking function. We
consider the special cases of embedding in the DCT domain and wavelet domain
using the Haar wavelet and Daubechies 4-tap �lter in conjunction with a masking
function based on a non-stationary Gaussian model, but the algorithm is applicable
to any combination of transform and masking functions. Our results indicate that
the proposed approach performs well against lossy compression such as JPEG and
other types of �ltering which do not change the geometry of the image.
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1 Introduction

The idea of using a robust digital watermark to detect and trace copyright
violations has stimulated signi�cant interest among artists and publishers in
recent years. Podilchuk [1] gives three important requirements for an e�ective
watermarking scheme: transparency, robustness and capacity. Transparency
refers to the fact that we would like the watermark to be invisible. The wa-
termark should also be robust against a variety of possible attacks by pirates.
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These include robustness against compression such as JPEG, scaling and as-
pect ratio changes, rotation, cropping, row and column removal, addition of
noise, �ltering, cryptographic and statistical attacks, as well as insertion of
other watermarks [2]. The other requirement is that the watermark be able
to carry a certain amount of information i.e. capacity. In order to attach a
unique identi�er to each buyer of an image, a typical watermark should be
able to carry at least 60-100 bits of information. However, most of the work
in watermarking has involved a one bit watermark. That is, at detection a
binary decision is made as to the presence of the watermark most often using
hypothesis testing [3]. Barni [4] encodes roughly 10 bits by embedding 1 wa-
termark from a set of 1000 into the DCT domain. The recovered watermark
is the one which yields the best detector response.

Watermarking methods can be divided into two broad categories: spatial do-
main methods such as [5,6] and transform domain methods . Transform do-
main methods have for the most part focused on DCT [1,4,7], DFT [8,9] and
most recently wavelet domain methods [1,10,11]. Transform domain methods
have several advantages over spatial domain methods. Firstly, it has been ob-
served that in order for watermarks to be robust, they must be inserted into
the perceptually signi�cant parts of an image. For images these are the lower
frequencies which can be marked directly if a transform domain approach is
adopted [12]. Secondly, since compression algorithms operate in the frequency
domain (for example DCT for JPEG and wavelet for EZW) it is possible to
optimize methods against compression algorithms as will be seen in section 3.
Thirdly, certain transforms are intrinsically robust to certain transformations.
For example, the DFT domain has been successfully adopted in algorithms
which attempt to recover watermarks from images which have undergone aÆne
transformations [8].

While transform domain watermarking clearly o�ers bene�ts, in some cases
it is desireable to specify constraints in another domain (spatial or another
transform domain). In this case the problem is more challenging since it is
more diÆcult to generate watermarks in one domain while taking into account
constraints in another. For example, the problem arises since constraints on
the acceptable level of distortion for a given pixel may be speci�ed in the
spatial domain. In the bulk of the literature on adaptive transform domain
watermarks, a watermark is generated in the transform domain and then the
inverse transform is applied to generate the spatial domain counterpart. The
watermark is then modulated as a function of a spatial domain mask in order
to render it invisible. However this spatial domain modulation is suboptimal
since it changes the original frequency domain watermark. In the case of a
DFT domain watermark, multiplication by a mask in the spatial domain cor-
responds to convolution of the magnitude of the spectrum. Unfortunately, to
correctly account for the e�ects of the mask at decoding a deconvolution prob-
lem would have to be solved. This is known to be diÆcult and to our knowledge
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in the context of watermarking this problem has not been addressed. Methods
proposed in the literature simply ignore the e�ects of the mask at decoding.
One alternative which has recently appeared is the attempt at specifying the
mask directly in the transform domain and ignoring spatial domain masking
[1]. However other authors (e.g. Swanson [13]). have noted the importance of
masking in the spatial domain even after a frequency domain mask has been
applied. It should be noted that masking in one domain is not easily formu-
lated since de�ning a spatial mask in
uences a frequency mask and vice-versa.

In this publication we develop a new approach for the mathematical modelling
of the embedding process. In particular, we derive an optimized strategy for
embedding a watermark in the wavelet and DCT domains when the mask-
ing constraints are speci�ed in the spatial domain. In fact, the key idea is to
optimize the encoding of the watermark with respect to the detector while
using all available information about the image. This framework overcomes
the problems with many proposed algorithms which adopt a suboptimal spa-
tial domain truncation and modulation as determined by masking constraints.
Furthermore we will develop an algorithm which is image dependent. Unlike
many of the embedding strategies described in the literature which treat the
image as noise possibly modelled by a probability distribution, the algorithm
we describe uses information about the image at embedding. We consider
only the problem of generating watermarks which are robust against attacks
that do not change the geometry of the image. We will work with an 80 bit
watermark which corresponds to a capacity suÆcient for most watermarking
applications. We begin in section 2 by presenting the spatial domain masking
methods we adopt in the rest of the paper. In section 3 the embedding algo-
rithm is described and applied to the case of DCT domain embedding. Then,
in section 4 we derive a new channel coding strategy which greatly improves
the performance of the underlying algorithm. In section 5 we show how the
algorithm can be applied in the wavelet domain. In section 6 we present our
results and a comparison of the DCT and wavelet domain algorithms followed
by the conclusion in section 7.

2 Spatial Domain Masking

Recently Voloshynovskiy proposed a spatial domain texture masking method
based where the image is �rst modelled as the sum of the local mean and an
error term, the latter of which is modelled by a generalized Gaussian distribu-
tion as detailed in [14]. A noise visibility function (NVF) at each pixel position
is then obtained as:

NV F (i; j) =
w(i; j)

w(i; j) + �2
x

; (1)
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0 e�uut�1du is the gamma function. The parameter 
 is called the

shape parameter which is in the range 0:3 � 
 � 1, and �x(i; j) is the local
mean calculated in a 3� 3 window.

The particularities of this model are determined by the shape parameter 

and the global image variance �2

x. To estimate the shape parameter, we use
the moment matching method in [15,16]. The shape parameter for most real
images is in the range 0:3 � 
 � 1. Once we have computed the noise visibility
function we can obtain the allowable distortions by computing:

�pi;j = (1�NV F (i; j)) � S +NV F (i; j) � S1 (2)

where S0 and S1 are the maximum allowable pixel distortions in textured and

at regions respectively Typically S0 may be as high as 30 while S1 is usually
about 3. We note that in 
at regions the NVF tends to 1 so that the �rst
term tends to 0 and consequently the allowable pixel distortion is at most S1

which is small. Intuitively this makes sense since we expect that the watermark
distortions will be visible in 
at regions and less visible in textured regions.
Examples of NVFs for two images are given in �gure 2. We note that the
model correctly identi�es textured and 
at regions. In particular the NVF is
close to 0 in textured regions and close to 1 in 
at regions.

While this model accurately models textures, the importance of luminance
masking has also been noted in the literature. In particular at high lumi-
nance levels the sensitivity of the HVS follows Weber's law which states that
Æl
l
= kWeber where Æl is the local change in luminance and l is the luminance of

the background. At lower luminance levels the HVS is more sensitive to noise.
Osberger [17] uses the DeVries-Rose law at low luminance levels (typically

< lth = 10cd=m2) which states that Æl
l
=
q

l
lth
� kWeber . The complete curve is

shown in 2. The x-axis contains the luminance between 0 and 255 while the
y-axis indicates the contrast sensitivity threshold (CST) given in terms of the
change in luminance divided by the luminance. In order to incorporate lumi-
nance masking into the model we propose multiplying the texture component
by (1 + k � CST (xi;j)) to obtain

�pi;j = (1 + k �CST (xi;j)) � (1�NV F (i; j)) � S0 +NV F (i; j) � S1 (3)

We do not multiply the non-texture component since experiments indicate this
becomes visible when increased. Experiments indicate that choosing k = 5
yields good results. This corresponds to increasing the allowable distortion by
5 in textured areas where the luminance level is high.
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Fig. 1. Original images of Barbara (a) and Fish (b) along with their NVF as deter-
mined by a generalized gaussian model (c) and (d).
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Fig. 2. Sensitivity of the HVS to changes in luminance

3 Problem Formulation

Having derived the spatial domain masking methods, we now mathematically
formulate the embedding process as a constrained optimization problem. We
assume that we are given an image to be watermarked denoted I. If it is an
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RGB image we work with the luminance component. We are also given a mask-
ing function V (I) which returns 2 matrices of the same size of I containing
the values �pi;j and �ni;j corresponding to the amount by which pixel Ii;j can
be respectively increased and decreased without being noticed. We note that
these are not necessarily the same since we also take into account truncation
e�ects. That is pixels are integers in the range 0�255 consequently it is possi-
ble to have a pixel whose value is 1 which can be increased by a large amount,
but can be decreased by at most 1. In the general case, the function V can
be a complex function of texture,luminance, contrast, frequency and patterns,
however we choose to use the masking functions described in section 2. We
wish to embedm = (m1; m2:::mM ) where mi 2 f0; 1g andM is the number of
bits in the message. In general, the binary message may �rst be augmented by
a checksum and/or coded using error correction codes to produce a message
mc of length Mc = 512. Without loss of generality we assume the image I
is of size 128 � 128 corresponding to a very small image. For larger images
the same procedure is adopted for each 128� 128 large block. To embed the
message, we �rst divide the image into 8 � 8 blocks. In each 8 � 8 block we
embed 2 bits from mc. In order to embed a 1 or 0 we respectively increase
or decrease the value of a DCT coeÆcient in order to change the sign of the
coeÆcient if necessary. Once the DCT domain watermark has been calculated,
we compute the inverse DCT transform and add it to the image in the spatial
domain. At decoding, we take the sign of the DCT coeÆcient, apply the map-
pings (+ ! 1),(� ! 0) and then decode the BCH codes to correct possible
errors.

The central problem with this scheme is that during embedding we would like
to increase or decrease the DCT coeÆcients as much as possible for maximum
robustness, but we must satisfy the constraints imposed by V in the spa-
tial domain. In order to accomplish this, we formulate the problem for each
8 � 8 block, as a standard constrained optimization problem as follows. For
each block we select 2 mid-frequency coeÆcients in which we will embed the
information bits. We then have:

min
x
f tx ; Ax � b (4)

x = [x11 : : : x81x12 : : : x82 : : : x18 : : : x88]
t is the vector of DCT coeÆcients ar-

ranged column by column. f is a vector of zeros except in the positions of the
2 selected coeÆcients where we insert a �1 or 1 depending on whether we wish
to respectively increase or decrease the value of the coeÆcients as determined
by mc. Ax � b contains the constraints which are partitioned as follows.

A =

2
666664
IDCT

����

�IDCT

3
777775 ; b =

2
666664

�p

����

�n

3
777775 (5)
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where IDCT is the matrix which yields the 2D inverse DCT transform of
x (with elements of the resulting image arranged column by column in the
vector). We take �p and �n to be column vectors where the elements are
taken column wise from the matrices of allowable distortions. Stated in this
form the problem is easily solved by the well known Simplex method. Stated
as such the problem only allows for spatial domain masking, however many
authors [18] suggest also using frequency domain masking. This is possible by
adding the following constraints:

L � x � U (6)

Here L and U are the allowable lower and upper bounds on the amount we by
which we can change a given frequency component. The Simplex method can
also be used to solve the problem with added frequency domain constraints.

We note that by adopting this framework, we in fact allow all DCT coeÆcients
to be modi�ed (in a given 8� 8 block) even though we are only interested in
2 coeÆcients at decoding. This is a novel approach which has not appeared
in the literature. Other publications select a subset of coeÆcients to mark
while leaving the rest unchanged. This is necessarily suboptimal relative to
our approach. We are in fact trying to maximize the detector response within
spatio-frequency percitibility bounds.

4 Watermark Embedding Based on Magnitude

Rather than coding based on the sign of a coeÆcient as in [7], we propose using
the magnitude of the coeÆcient. To encode a 1 we will increase the magnitude

of a coeÆcient and to encode a 0 we will decrease the magnitude. At decoding
a threshold T will be chosen against which the magnitudes of coeÆcients will
be compared. The coding strategy is summarized in table 1 where ci is the

Table 1
Magnitude Coding

sign(ci) bit Coding

+ 0 decrease ci (set L to stop at 0)

� 0 increase ci (set U to stop at 0)

+ 1 increase ci

� 1 decrease ci

selected DCT coeÆcient. The actual embedding is performed by setting f in
equation 4 based on whether we want to increase or decrease a coeÆcient.
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The major advantage of this scheme over encoding based on the sign is that
the image is no longer treated as noise. As noted by Cox [19] this is an im-
portant characteristic of the potentially most robust schemes since a priori

information on the information is used to maximize decoder response. Clearly
the best schemes should not treat the image as noise since it is known at em-
bedding. In our case, based on the observed image DCT coeÆcient we encode
as indicated in table 1. At decoding the image is once again not noise since it
contributes to the watermark. Another important property of this scheme is
that it is highly image dependent. This is an important property if we wish
to resist against the watermark copy attack [20] in which a watermark is es-
timated from one image (tyically by denoising) and added to another image
to produce a fake watermark. If this is done, the watermark will be falsely
decoded since at embedding and decoding the marked image is an integral
part of the watermark. Consequently changing the image implies changing
the watermark.

It is also possible to incorporate JPEG quantization tables into the model in
order to increase the robustness of the algorithm. Assume for example that
we would like to aim for resistance to compression at JPEG quality factor 10.
Table 2 contains the threshold value below which a given DCT coeÆcient will
be set to 0. In order to improve the performance of the algorithm we can add

Table 2
Thresholds at JPEG quality factor 10

30 30 30 40 60 100 130 130

35 35 35 50 65 130 130 130

40 35 45 45 65 130 130 130

40 45 60 75 130 130 130 130

50 55 95 130 130 130 130 130

60 90 130 130 130 130 130 130

125 130 130 130 130 130 130 130

130 130 130 130 130 130 130 130

bounds based on the values in table 2 to the amount we increase a coeÆcient.
In particular, if we wish to embed a 1 we need only increase the magnitude
of a coeÆcient to the threshold given in table 2 in order for it to survive a
compression at quality factor 10. This is accomplished by setting the bounds
L and U . Since 2 bits are embedded per block, the remaining energy may
be used to embed the other bit. It is important to note that it may not be
possible to achieve the threshold since our visibility constraints as determined
by V in the spatial domain must not be violated, however the algorithm will
embed as much as much energy as possibly via the minimization in equation
4. We note that we choose only to embed the watermark in randomly chosen
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coeÆcients where the value in table 2 is less than 70 since for larger values we
will require more energy to be sure that the coeÆcient survives at low JPEG
compression. We avoid the 4 lowest frequency components in the upper left
hand part of the DCT block since these tend to be visible even with small
modi�cations.

5 Wavelet Domain Embedding

In order to embed the message, in the wavelet domain, we perform a similar
optimization as the one performed in the DCT domain. We �rst divide the
image into 16� 16 blocks and perform the 1-level wavelet transform. In order
to embed a 1 or 0 we adopt a di�erential encoding strategy in the lowest sub-
band (LL). In particular we choose four neighbouring coeÆcients and increase
two coeÆcients while decreasing the other two. The choice of which two to
increase or decrease is a function of whether we wish to encode a 1 or a 0
so that at decoding we take the di�erence between the sums of the two pairs
of coeÆcients and apply the mappings (+ ! 1),(� ! 0). We note that it
is important to select a 2� 2 block of neighbouring coeÆcients since the un-
derlying assumption is that the di�erence on average is 0. In order to embed
the largest possible values while satisfying masking constraints, the problem
is formulated for each 16 � 16 block as a constrained optimization problem.
In the case of the Haar wavelet, for a 16 � 16 block, we have 64 coeÆcients
available in the LL subband. In each block we encode 8 bits by selecting 32
coeÆcients grouped into 8 2 � 2 blocks. We then have equation 4 as before
however x = [x1;1 : : : x16;1x12 : : : x16;2 : : : x1;16 : : : x16;16]

t is the vector of coeÆ-
cients arranged column by column. Furthermore, f is a vector of zeros except
in the positions of the selected coeÆcients where we insert a (�1) or (1) de-
pending on whether we wish to respectively increase or decrease the value of
a coeÆcient. The constraints are now partitioned as:

A =

2
666664
IDWT

����

�IDWT

3
777775 ; b =

2
666664

�p

����

�n

3
777775 (7)

where IDWT is the matrix which yields the 2D inverse DWT transform of
x (with elements of the resulting image arranged column by column in the
vector). We also note that we take �p and �n to be column vectors where
the elements are taken columnwise from the matrices of allowable distortions.
The problem is once again solved by the Simplex method. Furthermore, extra
constraints in the frequency domain can also be incorporated as before via
equation 6. Unfortunately, in this case it is not possible to optimize the method
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relative to JPEG compression since the quantization matrice are speci�ed in
the DCT domain.

6 Results

Both algorithms based on magnitude coding were tested on 5 small images.
These were Lena, Bear, Girl, Boat, and Watch which were all resized to
128 � 128. Prior to embedding the 80 bit message, we �rst append a 20
bit checksum and then encode the message using turbo codes [21] to yield
a binary message of length 512. Turbo codes provide near optimum perfor-
mance for Gaussian channels and are consequently superior to other codes
used currently in watermarking (mostly BCH and convolution). We note that
even though this channel is not Gaussian, tests indicate that turbo codes out-
perform BCH codes [22]. In fact, JPEG compression introduces quantization
noise which is diÆcult to model. However, the development of optimal codes
for quantization channels is well beyond the scope of this paper, but is dis-
cussed by Eggers [23]. The 20 bit checksum is essential in determining the
presence of the watermark. At detection if the checksum is veri�ed we can
safely say (with probability 1

220
of error) that a watermark was embedded and

successfully decoded.

With respect to wavelet domain watermarking, both the Haar wavelet and
the Daubechies 4-tap �lter were tested. In the case of the Haar wavelet, the
algorithm was resistant down to a level of 70% JPEG quality factor. Better
results were obtained for the 4-tap Daubechies �lter where the algorithm is
robust down to a level of 50% quality factor and is resistant as well to low
and high pass �ltering. By resistant, we understand that all the bits are cor-
rectly decoded and the checksum veri�ed. We note that for the case of the
Daubechies 4-tap �lter, some minor modi�cations must be made to the em-
bedding strategy. In particular, when taking the inverse DWT we obtain a
block size which is bigger than the original block. These boundary problems
are well known in the wavelet literature. The diÆculties are easily overcome
by imposing that the extra boundary pixels be constrained to be 0. This is
done in practice by setting the appropriate values in �p and �n to 0:1 and
�0:1 respectively. We do not set these all the way to zero since often this leads
to an overly constrained problem. An example is given in �gure 3 where the
original image (128� 128), watermarked image (Daubechies 4-tap �lter) and
watermark (di�erence between original and watermarked) are presented. We
observe that the watermark is stronger in textured regions as expected. We
note that the watermark is slightly visible along the long vertical edge to the
left of the image. This is a limitation of the visibility model which does not
take into account the high amount of structure to which the eye is particu-
larly sensitive. In order to overcome this problem more sophisticated models

10



20

40

60

80

100

120

140

160

180

200

(a)

20

40

60

80

100

120

140

160

180

200

220

(b)

−15

−10

−5

0

5

10

15

(c)

Fig. 3. Original image Lena(a) along with watermarked image (b) and watermark
in (c)=(a)-(b).

are being developed which take into account the presence of lines in the im-
age. In these regions, the allowable distortion must be reduced. Maximizing
the strength of the watermark while minimizing visibility in an automatic way
over a wide range of images is a delicate problem since each image is unique
and presents its own diÆculties.

On a Pentium 233MHZ computer the algorithm takes 20 minutes to embed
the watermark. This time is non-negligible. The problem arises from the fact
that a formidable optimization problem must be solved at embedding. That
is at each block we have 2 � 16 � 16 = 512 constraints. On the other hand
the optimization in each block is independent once the global mask has been
calculated. Consequently the algorithm can be carried out in parallel.
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The results for DCT domain embedding relative to JPEG compression were
far superior than for the wavelet domain. Indeed, it is possible to recover
80 bits after compression at JPEG quality factor 10% for a 128 � 128. This
suggests that there is much to be gained by matching the transform domain of
the watermark with the transform domain where compression takes place. We
note that the resulting DCT watermarked image is visually indistinguishable
from the wavelet domain watermarked image presented in �gure 3. This results
from the fact that the maximal distortions in both cases are speci�ed by the
same spatial domain mask. Once again, as with wavelet domain embedding,
DCT domain embedding requires roughly 20 minutes for a 128� 128 image.
Unfortunately, the algorithm cannot be applied to a full frame DFT. The
problem lies in the excessive computational load. For a 128� 128 image, if we
wish to structure the embedding problem in the magnitude of the DFT, we
will have 128 � 128 � 2 = 32; 768 constraints which is overwhelming and more
importantly, it is impossible to adapt to local frequency charactersitics of the
image, inducing poor imperceptibility .

7 Conclusion and Further Research Directions

In this article we have described a new mathematical model which describes
the process of embedding a watermark in a transform domain when the mask-
ing constraints are speci�ed in the spatial domain. This model has 5 charac-
teristics which make it extremely appealing:

(1) The algorithm is extremely 
exible in that constraints as determined by
masking functions can be easily incorporated in the spatial domain and
any linear transform domain may be used although here we considered
the special cases of the Haar and Daubechies wavelets as well as DCT
domain embedding. Also, extra constraints may be added in the frequency
domain.

(2) We show how to handle problems with truncation in an optimal way and
propose the novel approach of modifying all coeÆcients even though we
are only interested in a subset.

(3) The algorithms resist well against JPEG compression and we observe in
particular that matching the embedding domain with the compression
domain and incorporating JPEG quantization tables at the embedding
stage leads to considerable gains.

(4) The algorithm generates a non-additive and image dependent watermark
which resists the watermark copy attack [20].

(5) At the embedding stage the image is not treated as noise which is an
important property of the most robust watermarking schemes as noted
by Cox [19]. In fact the algorithm uses available information about the
image at the embedding stage to maximize the decoder response.
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While much has been accomplished by structuring the problem of watermark-
ing within this framework, many new research directions arise. We note �ve
possiblities in particular:

(1) While the DCT domain algorithm resists well against JPEG compression
further research is needed in order to adapt the wavelet domain approach
so that it is resistant against EZW and SPIHT compression.

(2) Work is currently also under way to apply the ideas of [8] so as to make
the algorithm resistant to geometric changes as well.

(3) Another topic of further research is the incorporation of more sophisti-
cated spatial domain masks. Most of the masks proposed in the water-
marking literature model texture, luminance and/or frequency. Osberger
[17] however identi�es several higher order factors which have been used
to weight distortion metrics (typically the distortion produced by com-
pression algorithms). The most important factors are:
� Contrast: Regions which have a high contrast with their surrounds
attract our attention and are likely to be of greater visual importance.

� Size: Larger regions attract our attention more than smaller ones how-
ever a saturation point exists after which the importance due to size
levels o� .

� Shape: Regions which are long and thin (such as edges) attract more
attention than round 
at regions.

� Colour: Some particular colours (red) attract more attention. Further
more the e�ect is more pronounced when the colour of a region is dis-
tinct from that of the background.

� Location: Humans typically attach more importance to the center of
an image.

� Foreground/Background: Viewers are more interested in objects in
the foreground than those in the background.

� People:Many studies have shown that we are drawn to focus on people
in a scene and in particular their faces, eyes, mouth and hands.

We note that these factors are speci�ed in the spatial domain and not
easily converted to the frequency domain. Further work could involve
incorporating these elements in the attempt to generate more accurate
spatial domain masks although detection of these elements is diÆcult to
automate.

(4) While some work has been done in capacity (e.g. [24]) the bulk of the
results concern additive watermarks. An interesting topic of further re-
search is the calculation of the capacity of the proposed non-additive
scheme.
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